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| construct a Lanczos process on a large and sparse matrix and use the results of
this iteration to compute the inverse square root of the same matrix. The algorithm
is a stable version of an earlier proposal by the author. It can be used for problems
related to the matrix sign and polar decomposition. The application here comes from
the theory of chiral fermions on the latticeg 2000 Academic Press

1. INTRODUCTION

The computation of the inverse square root of a matrix is a special problem in scient
computing. It is related to the matrix sign and polar decomposition [1].
One may define theatrix signby

sign(A) = A(A%) Y2, (2)

whereA is a complex matrix with no pure imaginary eigenvalues.
In polar coordinates, a complex numbkes X + iy, is represented by

z=1z/e?, ¢= arctan%. 2)

In analogy, the polar decomposition of a matfis defined by
A=V(ATAY?2 v 1=vVT (3)

whereV is the polar part and the second factor corresponds to the absolute value of
The mathematical literature invloving the matrix sign function traces back to 1971 wh
it was used to solve the Lyapunov and algebraic Riccati equations [1].
In computational physics one may face a similar problem when dealing with Monte Ca
simulations of fermion systems, the so-calgégin problen2]. In this case the integration
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measure is proportional to the determinant of a matrix and the polar decomposition may
helpful to monitor the sign of the determinant.

The example brought in this paper comes from recent progress in formulating quant
chromodynamics (QCD) on a lattice with exact chiral symmetry [3].

In continuum, the massless Dirac propagddgsn.: is chirally symmetric; i.e.,

¥5Dcont + Deontys = 0. (4)

On aregular lattice with spacireghe symmetry is suppressed according to the Ginsparg
Wilson relation [4],

ysD 4+ Dys = aDysD, %)

whereD is the lattice Dirac operator.
An explicit example of a Dirac operator obeying this relation is the so-called overl:
operator [5]

aD=1-— AA'AY2 A=M —aDy, (6)

whereM is a shift parameter in the rang@, 2), which | have fixed at one.
Dy is the Wilson operator,

4 4
a
TR DA ™
n=1 n=1

which is a nearest-neighbors discretization of the continuum Dirac operator (it viola
the Ginsparg—Wilson relationy,, andA , are first and second order covariant difference:s
given by

V)i = 2 Upivivn — U _aviog)
(M) = 2 Uiy + UL _pviop — 200),

wherey; is a fermion field at the lattice siteandU,, ; an SU(3) lattice gauge filed associ-
ated with the oriented linKi,i + f1). These are unitary % 3 complex matrices with
determinant one. A set of such matrices forms a lattice gauge “configuration.”

vu, . =1,...,5 are 4x 4 Dirac matrices which anticommute with each-other.

Therefore, if there aréN lattice points in four dimensions, the matrix is of order
12N. A restive symmetry of the matriR that comes from the continuum is the so-called
ys—symmetrywhich is the hermiticity of thes A operator.

By definition, computation oD involves the inverse square root of a matrix. This is
a non-trivial task for large matrices. Therefore several algorithms have been proposet
lattice QCD physicists [6—10].

All these methods rely on matrix—vector multiplications with the sparse Wilson matr
Dw, being therefore feasible for large simulations.

In fact, methods that approximate the inverse square root by Legendre [6] and Cheby:s
polynomials [7] need to know priori the extreme eigenvalues Af A to be effective. This
requires computational resources for at least one conjugate gradients (CG) inversion.
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In [8] the inverse square root is approximated by a rational approximation, which allo
an efficient computation via a multi-shift CG iteration. Storage here may be an obsta
which is remedied by a second CG step [11].

The Pade approximation used by [9] needs the knowledge of the smallest eigenvall
AfA. Therefore the method becomes effective only in connection witBtimeersion [12].

The method presented earlier by the author [10] relies on taking exactly the inverse sq
root from the Ritz values. These are the roots of the Lanczos polynomial approximating
inverse of Af A.

In that work the Lanczos polynomial was constructed by applying the Hermitian opera
ysA. The latter is indefinite, thereby responsible for observed oscillations in the resid
vector norm [10].

Here | use a Lanczos polynomial on the positive definite mafiA. In this case the
residual vector norm decreases monotonically and leads to a stable method. Thisis a cr
property that allows a reliable stopping criterion that | will present here.

The paper is self-contained: in the next section | will briefly present the Lanczos algorit|
and set the notations. In Section 3, | use the algorithm to solve linear systems, an
Section 4, give the computation of the inverse square root. The method is tested in Secti
and conclusions are drawn in the end.

2. THE LANCZOS ALGORITHM

The Lanczos iteration is known to approximate the spectrum of the underlying matrix
an optimal way and, in particular, it can be used to solve linear systems [13].
Let Qn = [qi, .- ., On] be the set of orthonormal vectors, such that

ATAQn = QnTy + Ba an(egn))T’ G = pib, p1=1/|bll2, (8)

whereT, is a tridiagonal and symmetric matrixjs an arbitrary vector, ang}, is a real and
positive constan&(” denotes the unit vector withelements in the directiom.

By writing down the above decomposition in terms of the vectpré=1,...,n and
the matrix elements of,,, | arrive at a three-term recurrence that allows these vecto
to be computed in increasing order, starting from the veqiorThis is thelLanczos
Algorithm,

Bo=0, p1=1/[bll2, go=0, qi=p1b

fori =1,...
v = AfAg
aj =QiTU 9)
Vi=v— 0o — G_1Bi-1
pi = Il
if gi<tol, n=1i, end for
Gi+1 = v/fi

wheretol is a tolerance which serves as a stopping condition.
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The Lanczos algorithm constructs a basis for the Krylov subspace [13]:
sparib, AfAb, ..., (ATA)"1b}. (10)
If the Algorithm stops aften steps, one says that the associated Krylov subspace is invaria
In floating point arithmetic, there is the danger that once the Lanczos algorithm (po
nomial) has approximated well some part of the spectrum, the iteration reproduces vec
which are rich in that direction [13]. As a consequence, the orthogonality of the Lancz
vectors is spoiled with an immediate impact on the history of the iteration: if the alg

rithm stoped aften steps in exact arithmetic, in the presence of round-off errors the loss
orthogonality would keep the algorithm going on.

3. THE LANCZOS ALGORITHM FOR SOLVING AfAx=b

Here | will use this algorithm to solve linear systems, where the loss of orthogonal
will not play a role in the sense that | will use a different stopping condition.
| ask for the solution in the form

X = QnYn. (11)
By projecting the original system onto the Krylov subspace | get
Q/ATAX = Qlb. (12)
By construction, | have
b= Qne{"/p1. (13)
Substitutingxk = Qnyn and using (8), my task is now to solve the system
To¥n = €1 /1. (14)
Therefore the solution is given by
x = QnT, 'el"” /p1. (15)
This way, using the Lanczos iteration, one reduces the size of the matrix to be inver
Moreover, sincd, is tridiagonal, one can compugg by short recurences.
If | define
n=b—AAX, g =nar, % =px, (16)
wherei =1, ..., itis easy to show that

pi+1Bi + picy + pi—1fi—1=0
O + Xi1Bi + Xioj + Xi_18i-1=0.

17)
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Therefore the solution can be updated recursively and | have the following
Algorithm1 for solving the system' Ax = b:

Bo=0, p1=1/|bll2, G=0 1 =pib

fori=1,...
v=AlAg

vi=v—0o —g-1B8i-1

Bi = lvll2
Gi+1="v/Bi (18)
. O + X +Xi—1Bi-1
Xig1 = —
Bi

oy = % + pi—1Bi-1

" Bi
lig1 = 0i+1/0i+1
Xit1 = Yit1/pi1
if < tol, n=i, end for

| 0i 41l

4. THE LANCZOS ALGORITHM FOR SOLVING ( AfA)Y2x=b

Now | would like to computex = (Af A)~%2b and still use the Lanczos algorithm. In
order to do so | make the following observations:
Let (AT A)~Y2 be expressed by a matrix-valued function, for example the integral formu

[1]:
2 [ ,
(ATA)™Y2 = f/ dt(t?+ ATA)? (19)
T Jo
From the previous section, | use the Lanczos algorithm to compute

(ATA b = QT e /1. (20)

It is easy to show that the Lanczos algorithm is shift-invariant; i.e., if the mafriis
shifted by a constant, say, the Lanczos vectors remain invariant. Moreover, the corre
sponding Lanczos matrix is shifted by the same amount.

This property allows one to solve the systéf1- Af A)x = b by using the same Lanczos
iteration as before. Since the mat(€ + AfA) is better conditioned thaA! A, it can be
concluded that once the original system is solved, the shifted one is solved too. There
| have

(t?+ ATA) b = Qu(t® + To) 'el” /1. (21)
Using the above integral formula and putting everything together, | get

x = (ATA)™Y2h = Q. T, V2e” / py. (22)
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There are some remarks to be made here:

(a) As before, by the application of the Lanczos iterationAm, the problem of
computing(Af A)~1/2b reduces to the problem of computiyg = T. 2\ /p; which is
typically a much smaller problem than the original one. But sifii¢@ is full, y, cannot
be computed by short recurrences. It can be computed, for example, by using the
decomposition off,, in its eigenvalues and eigenvectors; in fact this is the method | hay
employed too, for its compactness and the small overhead for moderate

(b) The method is not optimal, as it would have been if one had applied it directly
the matrix (Af A)/2. By using A A the condition is squared, and one loses a factor of
compared to the theoretical case!

(c) From the derivation above, it can be concluded that the systém)/°x = b is
solved at the same time as the systaid\x = b.

(d) Toimplementthe result (22), | first construct the Lanczos matrix and then compt

Yo = T, 2" /o1 (23)

To computex = QnVn, | repeat the Lanczos iteration. | save the scalar products, thougr
is not necessary.

Therefore | have the following

Algorithm2 for solving the syste@’ A)Y/2x = b:

Bo=0, pr=1/|bll, do=0, a1=pib

fori=1,...
v=AlAg
Q= QiTU
vi=v -G —Gi-1fioa
Bi = llvll2
Giv1= /P
P + pi-1Bi-1
Bi
if < tol, n=i,end for (24)
|01 +4l

Set(To)ii = ai, (Th)i+1i = (Th)ii+1 = Bi, otherwise(Ty); j =0
o= T2 s = Un 20T

Qo=0, gr=p1b, Xp=0

fori=1,...,n
X =X_1+GYy
v=AlAg

vVi=v—0o —0i-18i-1

Oi+1=v/pfi
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By o | denote a vector with zero entries and by, A, the matrices of the eigenvec-
tors and eigenvalues @f,. Note that there are only four large vectors necessary to stor

Gi-1,0i, v, X.

5. TESTING THE METHOD

| propose a simple test: | solve the systé&iAx = b by applyingAlgorithm2twice; i.e.,
| solve the linear systems

(ATAY2z=b, (ATAY2x =2 (25)
in the above order. For each approximationl compute the residual vector
ri=b— AlAx. (26)

The method is tested for an SU(3) configuratiorgat 6.0 on an 816 lattice, corre-
sponding to an order 98,304 complex matfix

In Fig. 1 I show the norm of the residual vector decreasing monotonically. The stagnat
of ||ri|l2 for small values ofol may come from the accumulation of round-off error in the
64-bit precision arithmetic used here.

This example shows that the tolerance line is above the residual norm line, which confi
the expectation thabl is a good stopping condition fa&lgorithm?2

Tolerance level

Il b - A*AXI,

1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
Ax multiplications

FIG. 1. Test of the Lanczos algorithm for the inverse square (80tA) ~Y/2b.
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6. CONCLUSIONS

| have presented a Lanczos method to compute the inverse square root of a large
sparse positive definite matrix.

The method is characterized by a residual vector norm that decreases monotonically
a consistent stopping condition. This stability should be compared with that of a simi
method presented earlier by the author [10], where the underlying Hermitian but indefir
matrix ys A led to appreciable instabilities in the norm of the residual vector.

In terms of complexity this algorithm requires less operations for the same accuracy tl
its indefinite matrix counterpart. This property is guaranteed by the monotonicity of t
residual vector norm. Nontheless, the bulk of the work remains the same.

With the improvement in store the method is complete.

It shares with methods presented in [8, 9] the same underlying Lanczos polynom
As is well known [13], CG and Lanczos methods for solving a linear system produce t
same results in exact arithmetic. In fact, CG derives from the Lanczos algorithm by solv
the coupled two-term recurences of CG for a single three-term recurence of Lanc:
However, the coupled two-term recurences of CG accumulate less round-off. This ma
CG preferable for ill-conditioned problems.

There are two main differences between the method presented here and those in [8,

(a) Since CG and Lanczos are equivalent, they produce the same Lanczos ma
Therefore, any function o&! Atranslates for both algorithms into a functiorifgf(given the
basis of Lanczos vectors). The latter function translates into a function of the Ritz valu
the eigenvalues of,. That is, whenever the methods of papers [8, 9] try to approximat
the inverse square root éff A, the underlying CG algorithm shifts this function to the Ritz
values. It is clear now that if | take the inverse square root from the Ritz values exactl
have no approximation error. This is doneAlyorithm?2

(b) Algorithm2sets no limits on the amount of memory required, whereas the mult
shift CG needs to store as many vectors as the number of shifts. For high accuracy apr
imations the multi-shift CG is not practical. However, one may lift this limit at the expens
of a second CG iteration (two-step CG) [11]. Therefatgorithm2and the two-step CG
have the same iteration workload, witigorithm2 computing exactly the inverse square
root.

Additionally, Algorithm2requires the calculation of Ritz eigenpairstaf which makes
for an overhead proportional ten? when the QR algorithm is used for the eigenvalues
and the inverse iteration for the eigenvectors [13]. Since the complexity of the Lanc:
algorithm is~nN, the relative overhead is proportional tn/N. For moderate gauge
couplings and lattice sizes this is a small percentage.

| conclude that the algorithms of [8, 9] may be used in situations where high accurac
not required and/oA is well conditioned.

Experience with overlap fermions shows that high accuracy is often essential [7, 1
Algorithm2is best suited in such situations.
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